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Abstract: Efficient syntheses of four aminocyclitols are reported. Each synthesis is 

accomplished in eight steps starting from D-()-quinic acid. The key step involves a highly 

regioselective ring opening of epoxides by sodium azide. 
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1. Introduction 

Aminocyclitols, also known as aminocarbasugars [1], contain at least one amino or substituted 

amino moiety in the cyclitols (polyhydroxylated cycloalkanes) [2]. Many natural and synthetic 

products containing aminocyclitol scaffolds have shown a variety of biological activities [3,4], such as, 

valienamine [5], pancratistatin [6], oseltamivir [7], and voglibose [4] (Figure 1). The synthesis of 

biological active aminocyclitols and assessment of their structure and activity relationship have 

generated considerable interest in recent years [4,8–17]. 

Previously, we have synthesized three aminocyclitols from D-()-quinic acid in nine to ten steps via 

stereoselective dihydroxylation as a key step [18] (Figure 2). These quercitol-like structures of 

aminocyclitols are also called as deoxyinosamines [4]. We described herein an alternative synthesis of 

two known aminocyclitols 5 and 6 along with two new aminocyclitols 10 and 11. The synthesis was 

accomplished in eight steps via a regioselective ring opening reaction of epoxides. 
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Figure 1. Representative natural or synthetic products containing aminocyclitol moiety. 

 

Figure 2. The previously synthesized aminocyclitols. 
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2. Results and Discussion 

Unlike the strategy we previously used in the synthesis of aminocyclitols (Figure 2), we started 

from the epoxides 1, 2 and 7, which were prepared from D-()-quinic acid in six steps, respectively [19]. 

When compounds 1 and 2 were treated with sodium azide in DMF under reflux conditions, they 

underwent a highly regioselective opening at the C4 position to afford 3 and 4, respectively (Scheme 1). 

Scheme 1. Synthesis of aminocyclitols 5, 6, 10 and 11. 

 
Reagents and conditions: (i) NaN3, DMF, 15-crown-5 (cat), reflux; (ii) (a) H2/Pd/C (b) 80% TFA. 
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The yields were mediocre but no other regioisomers were detected by TLC or isolated from column 

purification [20]. Interestingly, the TMB-protected compound 7 was treated with NaN3 to afford 8 in 

71% yield and its epimer 9 in 14% yield. The azide directly attacked the least hindered side of 7 at the 

C4 position to give 8. However, a plausible mechanism for the formation of the minor component 9 

results from the C5 hydroxide group of 7 being attacked at the C4 position to give intermediate 12a 

(Figure 3). 

Figure 3. Plausible mechanism for the formation of 9. 
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Instead of attack at the least hindered side at the C5 position of 12a by azide, known as the Payne 

rearrangement [21], the hydroxide group at C3 of 12a internally removed the proton of HN3 

(intermediate 12b). That allowed the resulting azide to attack the vicinal C4 position of 12b to give 9. 

This resulted in the retention of configuration of epoxide 7. This observation was very unusual and in 

contrast to the results that occurred in the 2,3-epoxy rearrangement [22]. Based on the Chem3D 

simulation, the cyclohexane core of 7 was in a boat-like conformation (Figure 4). The trans-diaxial 

attack at C4 in 7 by azide leading to 8 as the major compound was energetically favorable. However, 

we could not rule out the possibility in formation of 12a which was derived from the trans-axial attack 

of the epoxide by C5-OH in 7. The lower yield of 9 was probably due to the half-chair like structure 

12a that was less favorable than 7 for allowing by azide attack (Figure 4). 

Figure 4. Three-dimensional representations of structures 7 and 12a. 

7

12a  

The Payne rearrangement of epoxide 7 intrigued us as an interesting issue when no rearrangement 

product 13 was found when compound 1 was treated with NaN3 (Figure 5). According to the Chem3D 

simulation, the conformation of cyclohexane core of 1 is a slightly twisted boat form. However, 
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compound 13 was in a boat conformation if the Payne rearrangement occurred. The reason was 

probably due to the steric congestion in the formation of 13 because the distance between epoxide and 

the C2 acetal oxygen atom of 13 is around 3.054 Å. On the contrary, the distance between the C5-OH 

and C2 oxygen atom of 1 is about 3.328 Å. Therefore, the trans-diaxial attack at C4 of 1 by azide 

might be kinetically or sterically controlled to lead to the major component 3. 

Figure 5. Three-dimensional representations of structures 1 and 13. 
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In order to obtain better yields of final products 5, 6, 10, and 11, we determined that azido 

compounds 3, 4, 8, and 9 should be hydrogenated first over Pd/C, followed by deprotection under 

acidic conditions. The one pot reaction conditions (H2/Pd/C/HCl) afforded low yields of target 

compounds accompanied by a more complicated mixture. It is worth noting that our strategy was much 

shorter than the reported method in the syntheses of molecules 5 and 6 which involved sixteen steps 

starting from D-mannitol [23]. The structure determinations were based on a series of NMR 

experiments (COSY, 2D-NOESY, HMBC, HMQC, and HRMS) and the selected NMR data were listed 

on Tables 1 and 2. 

Table 1. Selected 1H (600 MHz) and 13C (150 MHz) NMR data for 3, 4, 8, and 9 in CD3OD. 
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Table 1. Cont. 

Compound H1 (J)/C1 H2 (J)/C2 H3 (J)/C3 H4 (J)/C4 H5 (J)/C5 H6 (J)/C6 

3 4.33–4.30 (m) 

74.7 

3.92 (dd, 7.0, 

5.3) 81.4 

4.04–4.01 (m) 

69.3 

3.21 (dd, 10.0, 

2.7) 86.8 

4.07–4.04 (m) 

71.9 

2.25 (dt, 15.7, 

3.6) 1.93 (ddd, 

15.7, 7.1, 3.7) 

32.1 

4 4.30 (dt, 6.5, 

2.3) 74.1 

3.89 (dd, 7.6, 

5.2) 81.0 

3.38 (dd, 10.4, 

7.6) 76.1 

3.04 (t, 10.2) 

71.5 

3.62 (td, 11.2, 

4.9) 68.6 

2.34 (ddd, 14.9, 

4.9, 2.2) 1.75 

(ddd, 14.9, 11.5, 

4.1) 34.1 

8 3.88 (ddd, 

11.6, 10.1, 

4.7) 65.3 

3.95 (dd, 10.0, 

3.4) 71.1 

3.85 (t, 3.5) 

64.5 

3.79 (t, 3.0) 

72.5 

3.74 (ddd, 

11.6, 5.2, 3.0) 

67.6 

1.79–1.74 (m) 

1.71 (t, 11.6) 32.8 

9 3.51–3.40 (m) 

66.1 

3.78 (tm, 9.5, 

0.8) 75.0 

3.32 (td, 9.4, 

0.8) 72.3 

3.13 (td, 9.5, 

1.7) 73.0 

3.45–3.42 (m) 

69.7 

2.01 (dt, 12.1, 

4.6) 1.51 (ddd, 

13.3, 12.3, 1.4) 

36.3 

Table 2. Selected 1H (600 MHz) and 13C (150 MHz) NMR data for 5, 6, 10, and 11 in D2O.  

 

Compound H1 (J)/C1 H2 (J)/C2 H3 (J)/C3 H4 (J)/C4 H5 (J)/C5 H6 (J)/C6 

5 4.03 (dd, 6.3, 

3.1) 70.0 

3.45 (dd, 9.4, 

2.8) 73.8 

3.90 (t, 9.8) 

67.2 

3.12 (d, 10.3, 

3.2) 56.7 

4.09 (dd, 6.5, 

3.2) 66.9 

2.08 (dt, 15.6, 

3.5) 1.70 (dt, 

15.6, 2.9) 32.6 

6 3.96–3.94 (m) 

68.3 

3.41–3.34 (m)a 

73.9 

3.41–3.34 (m)a 

71.7 

2.53 (t, 9.8) 

59.4 

3.59 (ddd, 

14.5, 10.0, 

4.6) 67.6 

1.98 (dt, 14.0, 

4.2) 1.47 (td, 

14.0, 2.5) 36.3 

10 3.91 (dt, 9.1, 

3.5) 67.0 

3.75–3.65 (m)a 

68.3 

3.75–3.65 (m)a 

67.2 

3.12 (t, 4.0) 

52.6 

3.75–3.65 (m)a 

72.1 

1.85 (td, 13.1, 

4.1) 1.75–1.62 

(m) 32.9 

11 3.39 (ddd, 

11.9, 9.4, 4.6) 

68.6 

3.15 (t, 9.3) 

77.0 

2.99 (t, 9.6) 

74.0 

2.49 (d, 9.8) 

58.8 

3.30 (td, 11.4, 

4.4) 68.7 

2.06 (dt, 12.2, 

4.5) 1.35 (dd, 

11.9, 11.9) 68.6 
a Assignments were not well resolved due to signal overlaps. 

3. Experimental  

3.1. General Methods 

1H (600 MHz) and 13C-NMR (150 MHz) spectra were recorded on a Bruker 600 MHz instrument. 

The chemical shifts were reported in ppm and relative to the residual of d-solvents: CD3OD (1H,  
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4.78 ppm; 13C, 49.0 ppm); D2O (4.69 ppm). Optical rotations were measured with a HORIBA  

SEPA-300 instrument. HRMS were measured by a Finnigan MAT 95S spectrometer. 

3.2. General Procedure of Ring Opening 

Compound 1 (0.838 g, 4.0 mmol), for example, was dissolved in DMF (30 mL). To this mixture 

was added NaN3 (2.3 g, 36.0 mmol) and a catalytic amount of 15-crown-5 and heated under reflux for 

56 h. At the end of the reaction time, the mixture was diluted with H2O (100 mL) and extracted with 

Et2O (2x100 mL). The organic layer was dried (MgSO4) and purified by column chromatography. 

3.3. General Procedures of Hydrogenation and Deprotection 

Compound 3 (0.079 g, 0.29 mmol) for example, was dissolved in MeOH (2 mL). To this mixture 

was added 10% Pd/C (10 mol%) and it was hydrogenated under one atmosphere at ambient 

temperature for 2 h. The resulting mixture was filtrated through a pad of Celite and washed with 

MeOH. The organic layer was concentrated and 80% TFA was added (2 mL), then stirred for 11.5 h, at 

the end of which time, the solvent was evaporated and the residue purified by column chromatography. 

3.4. Synthesis of the Key Intermediates and the Target Molecules 

3.4.1. (1R,2R,3R,4S,5S)-4-Azido-1,2-O-cyclohexylidene-cyclohexane-1,2,3,5-tetraol (3) 

Purification by flash column chromatography (230–400 mesh SiO2, EtOAc/hex = 1/81/2) afforded 

a white solid. Yield = 67%. MP = 122128 °C. []D
25 +36.2 (c 0.31, MeOH). 1H-NMR (CD3OD)  

4.56 (s, 2H, -OH), 4.334.30 (m, 1H), 4.074.04 (m, 1H), 4.044.01 (m, 1H), 3.92 (dd,  

J = 7.0, 5.3 Hz, 1H), 3.21 (dd, J = 10.0, 2.7 Hz, 1H), 2.25 (dt, J = 15.7, 3.6 Hz, 1H), 1.93 (ddd,  

J = 15.7, 7.1, 3.7 Hz, 1H), 1.721.54 (m, 8H), 1.481.42 (m, 2H). 13C-NMR (CDCl3)  110.7, 81.4, 

74.7, 71.9, 69.3, 66.8, 39.4, 36.2, 32.1, 26.2, 25.1, 24.8. HRMS (ESI) calcd for C12H19N3O4 (M+) 

269.1376. Found: 269.1371. 

3.4.2. (1R,2R,3R,4S,5R)-4-Azido-1,2-O-cyclohexylidene-cyclohexane-1,2,3,5-tetraol (4) 

Purification by flash column chromatography (230400 mesh SiO2, EtOAc/hex = 1/81/2) afforded 

a white solid. Yield = 69%. Mp = 125130 °C. []D
25 −146.6 (c 0.45, MeOH). 1H-NMR (CD3OD) 

4.57 (s, 2H, -OH), 4.30 (dt, J = 6.5, 2.3 Hz,1H), 3.89 (dd, J = 7.6, 5.2 Hz, 1H), 3.62 (td,  

J = 11.2, 4.9 Hz, 1H), 3.38 (dd, J = 10.4, 7.6 Hz, 1H), 3.04 (t, J = 10.2 Hz, 1H), 2.34 (ddd, J = 14.9, 

4.9, 2.2 Hz, 1H), 1.75 (ddd, J = 14.9, 11.5, 4.1 Hz, 1H), 1.701.52 (m, 8H), 1.441.40 (m, 1H), 

1.391.30 (m, 1H). 13C-NMR (CD3OD)  110.8, 81.0, 76.1, 74.1, 71.5, 68.6, 39.3, 36.2, 34.1, 26.1, 

25.0, 24.8. HRMS (ESI) calcd for C12H19N3O4 (M
+) 269.1376. Found: 269.1377. 

3.4.3. (1R,2S,3R,4S,5S)-4-Azido-1,2-[(2S,3S)-2,3-dimethoxybutan-2,3-dioxy]-cyclohexane-1,2,3,5-

tetraol (8) 

Purification by flash column chromatography (230–400 mesh SiO2, EtOAc/hex = 1/151/2) 

afforded a white solid. Yield = 71%. MP = 178182 °C. []D
25 +157.4 (c 0.19, MeOH). 1H-NMR  
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(CD3OD)  3.95 (dd, J = 10.0, 3.4 Hz, 1H), 3.88 (ddd, J = 11.6, 10.1, 4.7 Hz, 1H), 3.85 (t,  

J = 3.5 Hz, 1H), 3.79 (t, J = 3.0 Hz, 1H), 3.74 (ddd, J = 11.6, 5.2, 3.0 Hz, 1H), 3.24 (s, 6H), 1.791.74 

(m, 1H), 1.71 (t, J = 11.6 Hz, 1H), 1.28 (s, 3H), 1.24 (s, 3H). 13C-NMR (CD3OD)  101.4, 100.6, 72.5, 

71.1, 67.6, 65.3, 64.5, 48.2, 48.1, 32.8, 18.0, 17.9. HRMS (ESI) calcd for C12H21N3NaO6 [M+Na]+ 

326.1328. Found: 326.1308. 

3.4.4. (1R,2S,3R,4R,5S)-4-Azido-1,2-[(2S,3S)-2,3-dimethoxybutan-2,3-dioxy]-cyclohexane-1,2,3,5-

tetraol (9) 

Purification by flash column chromatography (230–400 mesh SiO2, EtOAc/hex = 1/151/2) 

afforded a white solid. Mp = 179185 °C. Yield = 14%. []D
25 +164.3 (c 0.28, MeOH). 1H-NMR  

(CD3OD) 3.78 (td, J = 9.5, 0.8 Hz, 1H), 3.513.40 (m, 2H), 3.32 (td, J = 9.4, 0.8 Hz, 1H), 3.27 (s, 

3H), 3.21 (s, 3H), 3.13 (td, J = 9.5, 1.7 Hz, 1H), 2.01 (dt, J = 12.1, 4.6 Hz, 1H), 1.51 (ddd,  

J = 13.3, 12.3, 1.4 Hz, 1H), 1.27 (s, 3H), 1.24 (s, 3H). 13C-NMR (CD3OD)  100.7 (×2), 75.0, 73.2, 

72.3, 69.7, 66.1, 48.3, 48.2, 36.3, 17.9 (x2). HRMS (ESI) calcd for C12H21N3NaO6 [M+Na]+ 326.1328. 

Found: 326.1328. 

3.4.5. (1R,2R,3R,4S,5S)-4-Aminocyclohexane-1,2,3,5-tetraol (5) 

Purification by flash column chromatography (230–400 mesh SiO2, MeOH/CH2Cl2/5%NH4OH = 

1/101/1) afforded a pale yellow syrup. Yield = 70%. []D
25 −76.7 (c 0.21, H2O). 1H-NMR (D2O)  

4.09 (dd, J = 6.5, 3.2 Hz, 1H), 4.03 (dd, J = 6.3, 3.1 Hz, 1H), 3.90 (t, J = 9.8 Hz, 1H), 3.45 (dd, J = 9.4, 

2.8 Hz, 1H), 3.12 (dd, J = 10.3, 3.2 Hz, 1H), 2.08 (dt, J = 15.6, 3.5 Hz, 1H), 1.70 (dt, J = 15.6, 2.9 Hz, 

1H). 13C-NMR (D2O)  73.8, 70.0, 67.2, 66.9, 56.7, 32.6. HRMS (ESI) calcd for C6H14NO4 [M+H]+ 

164.0923. Found: 164.0919. 

3.4.6. (1R,2R,3R,4S,5R)-4-Aminocyclohexane-1,2,3,5-tetraol (6) 

Purification by flash column chromatography (230–400 mesh SiO2, MeOH/CH2Cl2/5%NH4OH = 

1/101/1) afforded a pale yellow syrup. Yield = 71%. []D
25 −19.4 (c 0.33, H2O). 1H-NMR (D2O) 

3.963.94 (m, 1H), 3.59 (ddd, J = 14.5, 10.0, 4.6 Hz, 1H), 3.413.34 (m, 2H), 2.53 (t, J = 9.8 Hz, 1H), 

1.98 (dt, J = 14.0, 4.2 Hz, 1H), 1.47 (td, J = 14.0, 2.5 Hz, 1H). 13C-NMR (D2O)  73.9, 71.7, 68.3, 

67.6, 59.4, 36.3. HRMS (ESI) calcd for C6H13NO4 (M
+) 163.0845. Found: 163.0835. 

3.4.7. (1R,2S,3R,4S,5S)-4-Aminocyclohexane-1,2,3,5-tetraol (10) 

Purification by flash column chromatography (230–400 mesh SiO2, MeOH/CH2Cl2/5%NH4OH = 

1/101/1) afforded a pale yellow syrup. Yield = 73%. []D
25 −48.2 (c 0.19, H2O). 1H-NMR (D2O)  

3.91 (dt, J = 9.1, 3.5 Hz, 1H), 3.753.65 (m, 3H), 3.12 (t, J = 4.0 Hz, 1H), 1.85 (dt, J = 13.1, 4.1 Hz, 

1H), 1.751.62 (m, 1H). 13C-NMR (D2O)  72.1, 68.3, 67.2, 67.0, 52.6, 32.9. HRMS (ESI) calcd for 

C6H14NO4 [M+H]+ 164.0923. Found: 164.0920. 
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3.4.8. (1R,2S,3R,4R,5S)-4-Aminocyclohexane-1,2,3,5-tetraol (11) 

Purification by flash column chromatography (230–400 mesh SiO2, MeOH/CH2Cl2/5%NH4OH = 

1/101/1) afforded a pale yellow syrup. Yield = 68%. []D
25 69.4 (c 0.18, H2O). 1H-NMR (D2O) 

3.39 (ddd, J = 11.9, 9.4, 4.6 Hz, 1H), 3.30 (td, J = 11.4, 4.4 Hz, 1H), 3.15 (t, J = 9.3 Hz, 1H), 2.99  

(t, J = 9.6 Hz, 1H), 2.49 (t, J = 9.8 Hz, 1H), 2.06 (dt, J = 12.2, 4.5 Hz, 1H), 1.35 (dd, J = 11.9, 11.9 Hz, 

1H). 13C-NMR (D2O)  77.3, 74.0, 68.7, 68.6, 58.8, 38.0. HRMS (ESI) calcd for C6H14NO4 [M+H]+ 

164.0923. Found: 164.0918. 

4. Conclusions 

In conclusion, aminocyclitols are a very important class of aminocarbasugars. We have synthesized 

two known and two new aminocyclitols in an efficient manner from D-()-quinic acid. Especially, our 

method provided a short alternative in syntheses of 5 and 6 than the literature. The ring opening of 

epoxide in 1, 2 and 7 by sodium azide to provide moderate to good yields of 3, 4, and 8, respectively, 

was highly regioselective owing to the steric effect. The studies of the biological activities of these 

compounds are currently ongoing and will be reported in due course. 
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